HESS J1640.6-4633 HESS J1641.0-4619 : Two intriguing high energy gamma sources in the galactic plan

Arnaud Mares

PhD at CENBG (Bordeaux, France) with Marianne Lemoine-Goumard and Marie-Hélène Grondin

> MODE2019 9 april 2019 Orlean, France

> > (ロ) (型) (E) (E) (E) (O)

Outline

[2] II] Localisation, sources model and extension

3 III] SED

- [4] IV] 4FGL expectation
- 5 V] Conclusion

6 VI] Perspective

I] Motivation

- Two high energy γ sources
- Angular seperation : 0.25°
- HESS J1640.6-4633 :

-Extended source (HESS, 0.07°)

 \rightarrow HESS template used in the previous paper (not in 4FGL) but TS $_{ext}$ not significant

-Coinciding with SNR 338.3-0.0 $\rightarrow \sim$ 11 kpc (HI abs) and associated plusar PSR J1640-4631 :

 $au_{c}=$ 3350 years and $\dot{E}{=}$ 4.4 imes 10 $^{36}erg~s^{-1}$

•Slane et al. 2010 : soft spectrum ($\Gamma = 2.3$)

•MLG 2014 : harder ($\Gamma = 1.99$) after *J1641.0-4619* detection **Proton accelerator ?**

Motivation-2

LEMOINE-GOUMARD ET AL.

3

 HESS J1641 : -Point source (HESS and Fermi) -Coinciding with SNR G338.5+0.1 and a dense HII region G338.4+0.0 -Very hard spectrum at TeV energy (HESS, Γ=2.0)

⇒Pevatron candidate (HESS TeV obs)

Galactic Longitude (deg)

Figure – TS map

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

II] Localisation

Position	and extension a	analysis : <i>FermiPy</i>	V 0.17.3
	Requ		
	Zenith angle	<90°	
	Energy	1 GeV-800 GeV	
	roi	10°	
	sources	4FGL	
	J1640	Point source	
	J1641	Point source	

isotropic : isotropic_8YP305_P8R3_SOURCE_V2*zmax80_v7_YB01_interp2.txt Galactic : test_model_InnerGalaxyYB01_test512_interp_noCO9.fits

(ロ) (型) (E) (E) (E) (O)

Localisation-2

$\begin{array}{c|c} \mbox{HESS J1640.6-4632} \\ \hline \mbox{4FGL} & \mbox{FermiPy} \\ \mbox{RA : 250.165} & \mbox{RA : 250.18 \pm 0.01} \ ^{\circ} \\ \mbox{DEC : -46.5452} & \mbox{DEC : -46.56 \pm 0.01} \ ^{\circ} \end{array}$

HESS J1641.0-4619

4FGL	FermiPy	
RA: 250.255	RA : 250.2529 \pm 0.0094 $^\circ$	
DEC: -46.3233	DEC : -46.297 \pm 0.096 $^\circ$	

"new" sources appear during the analysis : sources with TS>16 (E> 1 GeV) which became TS \geq 25 after fiting=> significant

Best sources model E > 1 GeV

Added sources

Most of these sources were seen before the 4FGL but seem to have disappear. Added sources (E > 1 GeV) Source name ΤS Index PS J1617.5-5104 TS = 33.7 $Gamma = 1.89 \pm 0.13$ PS J1633.7-4755 TS=87.2 $Gamma = 2.74 \pm 0.17$ PS J1638.4-4715 TS = 32.73 $Gamma = 2.58 \pm 0.22$ PS J1640.2-4803 TS = 49.53 $Gamma = 3.13 \pm 0.31$ PS J1647.4-4541 TS=31.22 $Gamma = 2.23 \pm 0.72$ PS J1652.3-4433 TS = 54.30 $Gamma = 2.820 \pm 0.15$ PS J1703.2-4145 TS=46 $Gamma = 3 \pm 0.5$ TS=31.61 PS J1705 1-4145 Gamma = 2.1 + 0.2TS=59PS J1708.8-4007 $Gamma = 3.07 \pm 0.25$

III] Extension

Estimation of the extension of J1640 using the new position and adding new sources.

Model comparaison for HESS J1640.6					
Model	N _{dof}	Likelihood	ΔTS (point vs model)		
Point (estimated)	4	-196791.96	////		
2D Gauss	5	-196772.48	39.5		
HESS	2	-196773.48	37		

For the first time, we saw the extension of J1640 using the Fermi LAT data.

No significant extension for J1641 : $TS_{ext} = 4.9$

Loglike profil for the extension of J1640

Figure - Evolution of the likelihood with the extension

Extension $\sim 0.064^{\circ}$ measured with fermiPy above 1 GeV \rightarrow better than HESS template but not in a significant way we use HESS extension and position (less degrees of freedom) =

Best source model E > 100 MeV

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Spectrum analysis

Selection requirements				
9 years <i>pass8</i> data	August 2008 – January 2017 (Jean's P305 files)			
Zenith angle	<90°			
Energy	200 MeV-1 TeV			
roi	12°			
	Free : 3.5° from center			
Sources from 4FGL	12° if variable source			
	else fix sources up to 20°			
J1640	HESS 2D gaussian (0.07°) (following MLG et al.2014) *			
J1641	Point source			

summed likelihood binned analysis using gtlike (SCTOOLS 11-07-00)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Spectrum model

Model comparaison : 100 MeV - 1 TeV				
J1640	J1641	DoF	$\Delta TS_{model-PLPL}$	
PowerLaw	PowerLaw	4	////	
PowerLaw	LogParabola	5	18.18	
LogParabola	LogParabola	6	25.66	

LP instead of PL for J1640 : $\sim 4\sigma \Rightarrow$ significatif 2LP is not significatif : TS<9 compared to PL-LP

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Spectral Energy Distribution : HESS J1640.6-4633

) ୬ ୯ ୯

Spectral Energy Distribution : HESS J1641.0-4619

P : 100 MeV-1 TeV		
807.98		
4.74e-11 erg/cm ² /s		
2.771 ^{0.089}		
0.148_0.08		

V] 4FGL expectation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

4FGL expectation : HESS J1641

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Then and now

For HESS J1640.6-4632 : MLG et al 2014 : $\Gamma = 1.99 \pm 0.04$ 4FGL : $\Gamma = 1.79 \pm 0.07$ 2019 : $\Gamma = 1.78 \pm 0.07$

For HESS J1641.0-4619 : MLG et al 2014 : $\Gamma = 2.47 \pm 0.05$ 4FGL : $\alpha = 2.569 \pm 0.073$, $\beta = 0.143 \pm 0.046$ 2019 : $\alpha = 2.77 \pm 0.08$, $\beta = 0.148 \pm 0.08$

(ロ) (型) (E) (E) (E) (O)

VI] Conclusion

New analysis :

- Good agreement betwen our analysis and the 4FGL
- For J1640 :
 - First time detection of the extension with the LAT.
 - Stable SED above 1 GeV, harder index ($\Gamma = 1.77$).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- For J1641
 - Point source
 - plusar-LAT like SED
 - Pevatron candidate (HESS)

VI] Perspective

- negative holes in the residual map \Rightarrow new diffuse model?
- Investigate the possible variability of HESS J1641 and look at other wavelength counterpart to constrain the type of source

うして ふゆう ふほう ふほう うらつ

- pulsation research on HESS J1641.0-4619
- submission of an ICRC abstract :

http://confluence.slac.stanford.edu/pages/viewpage.action ?pageId = 243092742

• draft will be ready for this summer