RX J1713-3946 First results from XMM Large Program

F. Acero, S. Katsuda, J. Ballet, P. Maggi, A. Picquenot, J. Devin, H. Sano

MODE workshop 2019, Orléans

A brand new look at the RX J1713, CR accelerator prototype

- SNR of a CC supernova. Age ~ 1600 yrs (Historical SN 393). d ~ 1kpc
- Young SNR with fast shock ~3500 km/s
- X-ray emission is synchrotron dominated
- Brightest TeV SNR

XMM-Newton 2009 mosaic

2018 mosaic > 1 Ms exposure

Original Goals of the Large Program

- Measure proper motion of the shock around the SNR
 Constrain external densities, acceleration mechanism
- Map the thermal emission from ejecta and shocked ISM
 Progenitor of SN, external densities
- Revisit the X-ray vs HESS comparison
 - Do the gamma-rays extend further out than X-rays

Original Goals of the Large Program

- Measure proper motion of the shock around the SNR
 - Constrain external densities, acceleration mechanism
- Map the thermal emission from ejecta and shocked ISM
 Progenitor of SN, external densities
- Revisit the X-ray vs HESS comparison
 - Do the gamma-rays extend further out than X-rays

Work in progress

Nature of bright extended thermal source

Source is extended (R~15 arcsec)

5

Brightest SRC is HIP 84332 HD 155603 Vmag= 6.7 Kmag= 1.2 pmRA=-1.4 pmDEC=-1.5 mas/yr PLX= 0.65±0.13mas ==> 1.5±0.2 kpc

1 1 mar 1 m	1
main_id	HD 155603
ra	258.615227
dec	-39.766649
coo_err_maj	0.007
coo_err_min	0.003
coo_err_angle	90
nbref	59
ra_sexa	17 14 27.65446
dec_sexa	-39 45 59.9377
main_type	SG*
other_types	sg* V* ** IR *
radvel	46.0000
redshift	
sp_type	K0_0-Ia
morph_type	

USNO star catalog

Riddle of the day: What is that source ?!

- Not the WR star !
- Extended. No bright pt src inside.
- Soft thermal (~0.5 keV)
- Nitrogen rich
- Blueshifted (~200 km/s)
- Nh(RXJ)< Nh < Nh(Gal)
- 1e35 erg/s in 0.5-7 keV if at 4 kpc

– What is it ?

- Not a WR nebula
- Not a young SNR
- Insert your guess here

Searching for large scale emission with GMCA

Mapping the soft emission across the entire SNR

Revisiting XMM/HESS extension

Gamma-rays extend further than X-rays ? X-ray data: XMM in 1-10 keV No XMM at large radius Absorption along line of sight not corrected

Comparing X- and TeV gamma-rays

- Which particle population are we probing ?
 - IC: 1 TeV photon comes from ~15 TeV e-
 - Synch: 15 TeV e- radiate at 0.2 keV for B=20 μ G
 - ==> A 1-10 keV X-ray map is not an ideal template for gammas

- Comparing F_x vs F_γ:
 - X-ray image has more contrast than gamma

Absorption along line of sight

• Absorption plays an important role even above 1 keV

Nh from optical extinction

Absorption along line of sight

Transmittance at 1 keV

Transmittance at 2 keV

Constructing X-ray profiles

• CubeXMM = (XMM_cube* - Astro_BKG_Cube) / cube_transmittance

ImageXMM = SUM(CubeXMM, Energies) =>

ImageXMM_smoo = PSF_HESS⁺(ImageXMM) =>

*: all point sources are inpainted +: PSF from HESS RXJ DL3 public release shrinken by 2

Radial profiles: 1-6 keV

Radial profiles: 1-6 keV

Radial profiles: 1-6 keV

17

Radial profiles: 0.9-2 keV

• Deep, homogeneous X-ray coverage across the entire remnant

• First hints of diffuse thermal emission and clumps

- X- and gamma-rays comparison. New profile has:
 - Increased X-ray coverage in radius and statistics
 - Correction for absorption along the line of sight
 - Exploring energy ranges closer to the TeV electrons
 - Correct for X/gamma contrast factor
- New profile shows that X/gamma difference is reduced