X-raying thermal and non-thermal remnants The case of Magellanic SNRs, superbubbles, and PWNe

Pierre Maggi Observatoire Astronomique de Strasbourg MODE Workshop 2019, Orléans

 Introduction : The Matryoshka dolls of stellar remnants Supernova remnants in the **Magellanic Clouds** On types and progenitors Non-thermal X-ray stellar remnants

Introduction

SNRs and Astrophysical Relevance

- Type Ia (or thermonuclear) SNe:
 - Explosion of a white dwarf (accreting or merger)
 - associated with old population, "delay" of several 10⁸ yr to 10¹⁰ yr
 - $N_{\rm Ia} \propto {
 m stellar} {
 m mass}$
 - ⇒ produce mostly Fe

Accreting or merging WD(s) ?

- Core-collapse (CC) SNe:
 - Explosion of a massive star (M_{MS} ≥ 8 M_☉)
 - associated with recent star formation, short-lived (< 40 Myr)
 - $N_{\rm CC} \propto {\rm SFR}$
 - ⇒ produce mostly O (+ Ne, Mg, Si)

End fate of massive stars (Sukhbold+2016)

$10^{51} \text{ erg} \times (a \text{ lot of SNe}) = a \text{ lot of energy } !$

Impact on the interstellar medium

- \mapsto Dominant source of energy and turbulence in the ISM (Mac Low & Klessen 2004)
- Carve large structures (up to kpc, Chu 2008)
- ► Create the hot phase ($T \gtrsim 10^6$ K) of the ISM, which dominates by volume
- ► Drive chemical enrichment in galaxies and intra-cluster gas (Kapferer+2006, Yates+2013)

(1)

3D simulations of ISM including SN feedback (Kim+2013)

• SN feedback is essential in cosmological models of galaxy evolution (hydrodynamic or semi-analytic, Hopkins+2012, Henriques+2013) to reproduce reasonable galaxy properties.

SNRs and Astrophysical Relevance

395

→ Compelling evidence that Galactic CRs are accelerated at SNR shock fronts

10-20% of SN energy into CRs Diffusive shock acceleration

Spectral signature of π^0 -decay (Ackermann+2013)

SNR RX J1713.7-3946 in TeV (Aharonian+2007)

17h10m

17h15m

 \Rightarrow SNRs allow us to probe the SN explosions, the origin of cosmic rays, the ISM (abundance/density) and the star formation cycle

Introduction

The Magellanic Clouds as Ideal Laboratories

X-ray

 $kT_s \propto v_s^2 \sim \text{keV}$ - mostly metal lines - excellent diagnostic: \hookrightarrow age, ISM density, Z

X-rays with Chandra

The Milky Way is ideal for studies of invididual objects

Cas A in X-rays, with Exosat (Peacock 1984) and Chandra(NASA/CXC)

The Milky Way is not suited for population studies

Large sample (300 SNRs, Green 2014), but:

- Distance uncertainties
- Line-of-sight confusion/crowding
- Absorption/reddening

5/30 Introduction

The Magellanic Clouds as Ideal Laboratories

Magellanic Clouds over ALMA

LMC and SMC

Nearest star-forming galaxies (50 & 60 kpc) Out of Galactic plane

 \mapsto Ideal for population studies

5/30 Introduction

The Magellanic Clouds as Ideal Laboratories

Magellanic Clouds over ALMA

	MW	MCs
Distance		
Multi- λ coverage	\checkmark	1 33
Absorption N _H	$\gtrsim 10^{22}~cm^{-2}$	\lesssim few 10 ²¹ cm ⁻²

LMC and SMC

Nearest star-forming galaxies (50 & 60 kpc) Out of Galactic plane

 \mapsto Ideal for population studies

Bubbles of relativistic particles inflated by pulsar's wind

The outer pressure is set by the changing environment. In the Milky Way, about 100 PWN or candidates for \approx 350 SNRs, 70 with detected pulsars [SNRcat, Ferrand & Safi-Harb 2012].

Introduction

PWN : The remnant within a remnant

Pulsars are born with a kick !

PWN around a supersonic neutron star [Gaensler et al. 2004]

X-ray PWN bow-shock [Kargaltsev & Pavlov 2008]

This produces a **bow-shock** structure around the PWN.

Introduction

Superbubbles : The remnants of remnants

Introduction

9/30

Superbubbles : The remnants of remnants

10 / 30 Magellanic SNRs

Supernova remnants in the Magellanic Clouds

On types and progenitors

Non-thermal X-ray stellar remnants

e Matryos ka dolls

10 / 30 Magellanic SNRs

The XMM-Newton survey of the LMC

PI: F. Haberl

Footprint of XMM survey on the LMC and final X-ray mosaic, combining 200+ pointings, almost 3 Ms (35 days) of exposure time

Grondin+2012, Horta+2012, PM+2012, 2014, 2016, Bozzetto+2014, Kavanagh+2013, 2015

11 / 30 Magellanic SNRs

The Small Magellanic Cloud SNRs

A smaller population

- 19 SNRs
- Complete (full coverage)
- Ideal for comparisons

12 / 30 Magellanic SNRs

The most evolved type Ia SNRs

Prototype: DEM L238 (Borkowski+2006)

- Shell: shocked ISM - **Iron-rich** core, X-ray bright

Iron-rich SNRs discovered in Maggi+2014, Bozzetto+2014, Kavanagh+2015

Iron-rich gas in the interior

- *kT*_{Fe} is 0.6 keV 1 keV
- Inferred $M_{\rm Fe}$ 0.5 to 1.5 M_{\odot}

Could NOT be observed in the Galaxy

+ Three Fe-rich SNRs in the SMC

Optical images : [S II] H α [O III]

SNR B0509-67.5	SNR B0519-690	N103B	DEM L71	B0548-704	SNR B0534-699	DEM L238
· O *			<u>_</u> .			
400 yr	600 yr	~800 y <u>r</u>	~4400 yr	~7100 yr	~10100 yr	~13500 yr
DEM L249	MCSNR J0506-7026	MCSNR J0508-6902	MCSNR J0527-7104	DEM L316A	MCSNR J0511-6759	MCSNR J0508-6830
~15000 yr ?	17 - 21 kyr	~23000 yr	~25000 yr . —	~ 27000 yr ?	> 25000 yr	> 20000 yr ?

14 / 30 Magellanic SNRs

The most evolved type Ia SNRs

Phase I:

- Ejecta-dominated (X)
- Balmer-dominated (O)
- Lyman-dominated (UV)

Phase II: • Early Sedov phase; ejecta + ISM shell (X) • fading in optical • little/no UV

Phase III:

- Fading-shell, central iron emission (X)
- ► Radiative cooling of shell traced by [O III] lines (O) and C III and O VI (UV)

Phase IV:

- No shell (too cool), Hot iron cores (X)
- (very) faint "fossil" [S II] lines (O)
- No UV (?)

Using sub-samples unaffected by SN ejecta → ISM abundance

S.S.S.	12+log(X/H)				
	0	Ne	Mg	Si	Fe
MW	8.69	7.94	7.40	7.27	7.43
LMC	$8.01^{+0.14}_{-0.21}$	7.39 ^{+0.11} -0.15	$6.92^{+0.20}_{-0.37}$	$7.11\substack{+0.20\\-0.41}$	$6.97^{+0.13}_{-0.18}$
SMC	7.63 ^{+0.57} _{-0.15}	$7.08^{+0.47}_{-0.13}$	$6.75^{+0.42}_{-0.13}$	_	$6.37^{+0.55}_{-0.24}$

Metallicity between 0.1–0.2 (SMC) and 0.2–0.5 solar (LMC)

► Lower [O/Fe] (0.15 dex) compared to ASCA SNRs (LMC, Hughes et al. 1998) → SN ejecta contamination (confirmed with Chandra, Schenck et al. 2016)

► Higher [O/Fe] (0.25 dex) in SMC than in LMC → different ancient star formation history, dust depletion, or only measuring abundances in star forming regions ? 16 / 30 Magellanic SNRs

Comparison of SNRs in external galaxies

XLF (Maggi+2016)

Main differences:

• Numbers: M33 dominates

• Shape:

M31 \sim M33, SMC flatter

LMC shape is more complex:

Bright tail Flat faint end (incomplete)

17 / 30 Magellanic SNRs

Comparison of SNRs in external galaxies

XLF scaled by SFR (Maggi+, in prep.)

Shape differences subsist, larger spread.
X-ray luminosity function is not universal, unlike radio LF
→ effects of metallicity and ISM density

" N_H fraction" = $N_H^X / N_H^{21 \text{ cm}}$ gives the line-of-sight position relative to the main gas disc

- SNRs in the Bar are (almost) all in front of the disc :
 Supports the (challenged) findings that the Bar is indeed "floating" in front of the disc
- SNRs in 30 Dor → behind:
 Confirms that 30 Dor is on the far side of the LMC
- N_H fraction \gg 1.2 ?
- molecular phase!

Adding a sense of depth with X-ray spectra

19 / 30 On types and progenitors

e Matryos ka dolis On types and progenitors

Typing the whole MC sample from the local stellar environment

Star formation history (SFH) map

1000

1000

10000

10000

Harris & Zaritsky (2008)

N_{CC}/N_{Ia} in the LMC is 1.47 (1.2–1.8) based on star formation, or 1.35 (1.1–1.5) including spectral results (SN ejecta/pulsars)

Method	$N_{\rm CC}/N_{\rm Ia}$	Ref.
LMC SNRs	1.1–1.5	Maggi+2016
Local SNe	3	Li+2011
Abundances in galaxy clusters	3.5 (2–4) 1.7–3.5 1.5–3	Sato+2007 de Plaa+2007 Lovisari+2011

More type Ia SNe in the LMC ?

- Unlikely biased either way
- → Specific SFH of the LMC (bursts 100 Myr, 500 Myr, and 2 Gyr ago)
 - Timescale of type Ia SNe (the majority explodes within 2 Gyr)

 $N_{\rm CC}/N_{\rm Ia}$ in the SMC is 2.2 (1.4–2.8) with the same method

observed ejecta abundance ratios vs. explosion models → progenitor mass

Maggi & Acero (2017)

21 / 30 On types and progenitors The CC-SN progenitor mass distribution

Katsuda et al. (2018)

21 / 30 On types and progenitors The CC-SN progenitor mass distribution

Katsuda et al. (2018)

21 / 30 On types and progenitors The CC-SN progenitor mass distribution

22 / 30 Non-thermal remnants

22 / 30 Non-thermal remnants

The synchrotron superbubble 30 Dor C

23 / 30 Non-thermal remnants The synchrotron superbubble 30 Dor C

$$B_2 \approx 26 \left(\frac{l_{adv}}{10^{18} \text{ cm } (= 1.3")} \right)^{-2/3} \eta_g^{1/3} (r_4 - 1/4)^{-1/3} \mu \text{G} \quad ; \quad l_{obs} \approx \sqrt{2} l_{adv} \quad (1)$$

24 / 30 Non-thermal remnants

The synchrotron superbubble 30 Dor C

The synchrotron superbubble 30 Dor C

26 / 30 Non-thermal remnants Extragalactic PWN

PWN or candidates in the LMC [CXO/NASA]

PWN allow us to :

- Find and study young pulsars
- Measure pulsar kick velocity
- Probe the origin of (some) relativistic particles and high-energy sources

The Fermi sources of the LMC: N157B [Ackermann et al. 2015]

First suggested by XMM-Newton and radio data [Owen et al. 2011], confirmed with Chandra [Maitra et a. 2015].

The SNR IKT16 with its central PWN

28 / 30 Non-thermal remnants A new SMC PWN

GHz emission of the SNR shell overlaid on optical (left) and soft X-rays (right). \Rightarrow Detection of extended + compact source radio emission.

Left: 5.5 GHz emission with 2.1 GHz radio contours (magenta), and soft and hard X-ray emission (green and blue). Middle: Polarisation vectors. Right: Radio SED

Peak fractional polarisation $P = 32 \pm 7\%$ and average polarisation ~ 23%.

The "pulsar" emission measured above 2 GHz has $\alpha \approx -1.8$.

30 / 30 Non-thermal remnants

The first extragalactic supersonic pulsar ?

Reminiscent of other supersonically moving pulsars.

Potential runaway ? Linear distance $\sim 1000 (t/10 \text{ Myr}) (v/100 \text{ km s}^{-1}) \text{ pc.}$

- All stages of an SNR life can be followed in nearby galaxies
 - Population studies give us insights on the host galaxies
- We do not yet fully understand how/which core-collapse supernovae explode : SNRs can help, but it's tricky
 - The TeV emission in superbubble 30 Dor C is leptonic in origin
 - We are slowly unraveling the population of extragalactic PWNe
- \hookrightarrow Observations with next-generation high-energy instruments have a lot of potential

Nucleosynthesis :

Main contributors to the iron-group elements

Double-Degenerate (DD)

Violent merger

Double-detonation DD

 $\Rightarrow \text{Merger scenario} \\ \text{Sub-} M_{\text{Ch}} \text{ WD}$

Standard(-isable) candles :

A probe of the accelerating universe

Single-Degenerate (SD)

+?

Accretion from a companion

 $\Rightarrow \text{Accretor scenario} \\ \text{Near-} M_{\text{Ch}} \text{WD}$

Nucleosynthesis yields \Rightarrow focus on the "Iron-peak elements" (Cr, Mn, Ni).

More massive WDs have denser cores. If at the onset of the explosion $\rho_c \gtrsim 10^8 \text{ g cm}^{-3}$), electron capture reactions $(p + e^- \rightarrow n + \nu_e)$ can occur, enhancing the yield of neutron-rich species.

Near- M_{Ch} WDs ("accretor") \rightarrow higher Cr, Mn, Ni to Fe. Sub- M_{Ch} WDs ("merger") \rightarrow lower Cr, Mn, Ni to Fe.

Nickel mass as another discriminant : Sub- $M_{Ch}WD$: $M_{Ni} = 0.008 - 0.04 M_{\odot}$ Near- $M_{Ch}WD$: $M_{Ni} = 0.06 - 0.12 M_{\odot}$

 \Rightarrow Mixture of near- M_{Ch} and sub- M_{Ch} WDs similar contributions from DD and SD channels

 \Rightarrow Only massive WDs only SD progenitors so far

Type Ia SNe with X-ray calorimeters

How to increase the sample of type Ia SNRs in which to measure neutron-rich species abundance ?

Simulated X-IFU (black) vs. CCD (red) spectra of an LMC type Ia SNR (N103B).

LMC type Ia SNR 0519-6902, SNR 0509-675, and N103B.