

Assessing the Evidence of Multipolar Fields in Pulsars

Prakash Arumugasamy Dipanjan Mitra, Oleg Kargaltsev, George Pavlov, Bettina Posselt

MODE-SNR-PWN 2019

Pulsar Wind Nebulae Pair cascades

Vela Pulsar and Wind Nebula in the X-rays

gsfc@NASA

Pulsar Wind Nebulae Pair multiplicity factor ~ 10⁵

Mean free path for magnetic pair production decreases with curvature

High pair multiplicity cannot be achieved with dipolar fields.

Ruderman & Sutherland, 1974

Ruderman & Sutherland, 1974

Coherent Radio Emission Pair multiplication Two stream instability

MODE 2019

Φ

Ruderman & Sutherland, 1974

Coherent Radio Emission Pair multiplication Two stream instability

X-ray Emission from near the Neutron star surface

Charged particles accelerated in a gap close to the poles

Charge bombardment on polar cap leads to local heating

At ~ 1 million K, predominantly X-rays

THE TRADITIONAL METHOD

MEASURE THE POLAR CAP AREA

Conservation of Magnetic Flux

 $B_{\text{Surf}} \cdot A_{\text{pc}} = B_{\text{dip}} \cdot A_{\text{pc,dip}}$ $> 10^{12} \text{G} < A_{\text{pc,dip}} \sim 10^{12} \text{G} \frac{2\pi^2 R^3}{cP}$

MEASURE THE POLAR CAP AREA

BEAMED EMISSION MODELS

Blackbody emission is isotropic

Reprocessed BB emission anisotropy in energy dependent.

Polar plots of specific intensity from Hydrogen, Helium, and Iron atmospheres (dash-dotted, dashed, and solid) Zavlin, Pavlov, & Shibanov, 1996

MEASURE THE POLAR CAP AREA

Blackbody and Atmosphere emission area compared to Dipolar polar cap area

EVIDENCE FOR BLACKBODY

Spectral fits for J0437-4715 Bogdanov, S., 2012

THE TRADITIONAL METHOD

Polar Cap Area

Requires high S/N observations at energies in which thermal PC emission dominates.

Weak predictive power with current data and telescopes.

THE ALTERNATIVE METHOD

MEASURE THE OFFSET THERMAL EMISSION AND **RADIO EMISSION**

Predictable Alignments of Emission from Dipolar Region

Thermal radiation from the surface and radio emission regions see a dipole

Close alignment of thermal emission peak and radio emission core components

Thermal X-ray and Radio Offset from Non-dipolar Fields

Radio emission regions still from dipolar region

Thermal emission from foot of open field lines

Radio timing solution for J0108-1431 with X-ray pulse offset measurement

THE ALTERNATIVE METHOD

Need a good sample with reliable thermal X-ray and radio offsets

Alignment =/= Dipolar Mis-alignment == Multipolar

Emission Profile Offset

EVIDENCE OF MULTIPOLAR FIELDS

Proton Cyclotron Lines in High-B Neutron Stars

5

2

0.5

0.2

Counts s-1 keV-1

 $\chi \chi$

Arumugasamy et al., 2019, In prep.

Proton Cyclotron Interpretation

Astrophys Space Sci, 2007

ALTERNATIVE 2

Stronger evidence and detailed modelling needed for confirmation

Cyclotron Absorption

EVIDENCE OF MULTIPOLAR FIELDS

