First results on the Equation of state constraints from NICER

Sebastien Guillot

Institut de Recherche en Astrophysique et Planétologie, Toulouse, France

Post-doc CNES

PULSU STELLARUM, SCIENTIA ET

ER + SEXTANT

VIA CAE

00G+D7

The internal structure of neutron stars is still unknown and many theories are proposed.

Dense nuclear matter is described by an equation of state $P(\rho)$. But what is it?

Ideally, we want measurements of both the mass M_{NS} and the radius R_{NS}.

The pulsed emission caused by hot spots on a rotating neutron star can help measure the compactness.

Credits: NASA/NICER

Strong gravity permits seeing beyond the hemisphere of the neutron star.

Credits: S. Morsink / NASA

The pulsed emission caused by hot spots on a rotating neutron star can help measure the compactness.

Credits: NASA/NICER

The pulsed emission also depends on the system geometry.

If we can model the lightcurve, it is preferable to know the neutron star mass.

M/R extracted from lightcurve

Bogdanov (2013)

NICER is NASA's fast X-ray photon counting machine.

Launched in June 2017

Credits: NASA/NICER

Credits: NASA/NICER

Data

Light curve model I: *Relativistic ray tracing*

NS properties inference (Likelihood statistical sampling)

Instrument properties

Mass, Radius, EOS

Light curve model II: Surface emission model + emission pattern

NICER now routinely observes a few key target millisecond pulsars to give us unprecedented signal-to-noise data.

PSR J0437-4715

Credits: NICER Science Team

In addition to the pulse profile shape, the energy information is important.

Using a new instrument means that we need to understand its response.

Optical loading at soft-energies

Credits: NICER Science Team

Light curve model I: *Relativistic ray tracing*

NS properties inference (Likelihood statistical sampling)

Instrument properties

Mass, Radius, EOS

Light curve model II: Surface emission model + emission pattern

The light curve modelling requires a relativistic ray-tracing model

Figures from NICER Science Team

NS properties inference (Likelihood statistical sampling)

Instrument properties

Mass, Radius, EOS

Light curve model II: Surface emission model + emission pattern

The thermal emission from a NS surface is modelled with a NS atmosphere.

Models by Zavlin et al. (1996), *Heinke et al.* (2006), Haakonsen et al. (2012)

2

The emission pattern of the hotspots are not well predicted by theory.

Two polar caps with Uniform Temperature

Two polar caps with two temperatures

Courtesy of Anna Watts

NS properties inference (Likelihood statistical sampling)

Instrument properties

The instrument properties also play a crucial role in the lightcurve modeling

Figures from NICER Science Team

We parameterize the instrument response, with a prior on the effective area.

NS properties inference (Likelihood statistical sampling)

Mass, Radius, EOS

<u>Preliminary results</u> for uniform temperature two-polar caps model

Courtesy of Tom Riley & Anna Watts

Preliminary results for dual-temperature two polar caps model.

Courtesy of Tom Riley & Anna Watts

Preliminary results for dual-temperature two polar caps model.

More complicated emission patterns to test

Courtesy of Anna Watts

Summary of preliminary results from NICER

◆ For PSR J0030+0451:

- Favors two polar caps with non-uniform temperatures
- ◆ A radius in the range 12–15 km, preferring stiff EOS
- The first mass measurement of an isolated pulsar.
- More models to test, improved NICER calibration

For other millisecond pulsars:

- On track to deliver 5% uncertainties with definitive data sets for two other pulsars.
- Newly discovered pulsars added to the target list.

Newly discovered millisecond pulsars with NICER PSR J0614–3329

PSR J0636–5129 PSR J1744–1134 PSR J2241–5236

Guillot et al., in prep.

Future missions will fully enable the light curve modelling technique

eXTP (~2025)

- Some imaging capabilities (60" PSF)
- ~ 4x more sensitive than NICER
- ◆ 10 µs time resolution
- + Hard X-ray instrument

Good imaging capabilities (5" PSF)

1.00

0.10

0.01

0.1

Effective

~2030

STROBE-X

STROBE-X/

JBE-X/XRCA

Atheno

NICER

XMM/pn

1.0

X-ray energy (keV)

LAD

10.0

RXTE

NuSTAR

30.0

- ~ 10× more sensitive than NICER
- 10 µs time resolution

The cold surface of millisecond pulsars can also be used to measure their radius.

Gonzalez-Canuilef, Guillot & Reisenegger, 2019

The cold surface of millisecond pulsars can also be used to measure their radius.

Gonzalez-Canuilef, Guillot & Reisenegger, 2019

★ For PSR J0030+0451:
★ R = 12-15 km, to be confirmed
★ M = 1.2-1.7 M ∘

Results expected soon for 4 other millisecond pulsars

 Future missions will fully exploit this technique to provide many more M and R measurements.